
OVERCOMING RELATIONAL  
DATABASE LIMITATIONS  
WITH NOSQL



2ROGUEWAVE.COM

1  �“Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement”, Eric Redmond and Jim R. Wilson, Lewisville, TX:  
The Pragmatic Programmers, 2012

2  �"An Introduction to Redis Data Types and Abstractions – Redis”, accessed June 10, 2016.
3  �“Relational Databases Vs. Graph Databases: A Comparison,” accessed June 10, 2016.

Relational databases are the workhorses of the modern database industry. They have limitations, however, when it 
comes to handling some types of data, in particular the large quantities of free-form data generated through mobile 
technology. NoSQL databases provide solutions for some of these problems but they introduce another problem in 
having no single query language that drives them. This paper examines the problem, surveys the solutions, and answers 
the question of how to implement the solutions through a consistent API.

LIMITATIONS OF RELATIONAL DATABASES
Traditionally, we have relied on relational database systems for storing data. Relational database systems provide data 
integrity and consistency by enforcing atomicity, consistency, isolation, and durability (ACID) properties. This is essential 
in many scenarios. For example, it avoids contention should an ATM withdrawal and a deposit transaction happen on 
the same account at the same time. The problem is that in many scenarios, such as caching shopping cart history, ACID 
properties are a significant performance overhead, which leads to problems with scalability.

Another aspect of many modern applications is that they work with unstructured data. Many applications use JSON to 
store their data. Relational database management systems (RDMS) don’t provide an efficient way to provide create, read, 
update, and delete (CRUD) operations on this data. 

NOSQL
NoSQL refers to a class of database management systems. NoSQL databases are not intended to replace relational 
databases but instead provide solutions where relational databases are not a good fit. They are often classified as:

1.	 Key-value: As the name suggests, these databases are intended to store key-value pairs. Key-value databases 
are designed to be fast, trading durability for raw speed1. While in traditional key-value data structures a string 
key is associated with a string value, in a key-value database, the value is not limited to a simple string but can 
also hold more complex data structures such as lists, sets, hashes, and bit arrays2. An example of a key-value 
database is Redis.

2.	 Document based: These databases are similar to key-value databases but store documents in the value part. 
Generally, the documents that are stored are in self-describing formats, such as XML, BSON, and JSON.  
An example of a key-document database is MongoDB.

3.	 Column based: These databases were created to store and process very large amounts of data distributed over 
many machines. There are still keys but they point to multiple columns. The columns are arranged by column 
family. Examples of column-based databases are Cassandra and HBase.

4.	 Graph based: In relational databases, references to other rows and tables are indicated by referring to their 
primary-key attributes via foreign-key columns. Relationships are first-class citizens of the graph data model and 
traversing the joins or relationships is very fast3. The relationship between nodes is not calculated at query time 
but is actually persisted as a relationship. An example of a graph-based database is Neo4j.

http://redis.io/topics/data-types-intro
http://neo4j.com/developer/graph-db-vs-rdbms/


3ROGUEWAVE.COM

POLYGLOT PERSISTENCE
Polyglot persistence is where you can leverage the strengths of many kinds of databases in the same system. This has 
become necessary because different databases are designed to solve different problems. Using a single database 
engine for all of the requirements usually leads to non-performant solutions4. For example, an e-commerce application 
may use a key-value store for its shopping cart. Accessing a shopping cart doesn’t require the overhead of transactions 
and ACID properties. The key aspect is to access the cart quickly. On the other hand, when the user checks out, the 
transactional data has to be secure and atomic. So a relational database is a better fit here. To store the transaction 
history, a document-based database may be a good choice. You can search it quickly and it scales well as the 
e-commerce application grows.

While the NoSQL approach seems a good solution to these issues, NoSQL databases don’t have a common query 
language like relational databases. So interacting with different databases requires dealing with the complexity of 
working with different query languages and integrating them into an application. 

THE SOURCEPRO DB SOLUTION
SourcePro DB has a proven track record for accessing relational databases using a high-level, database-independent 
C++ interface. Using the same interface, SourcePro DB can also interact with NoSQL databases, enabling polyglot 
persistence without the need to learn new query languages. 

The following white papers demonstrate how to access MongoDB, Cassandra, and Redis using the SourcePro DB 
interface, including code samples.

•	 Using SourcePro with MongoDB

•	 Using SourcePro with Cassandra

•	 Using SourcePro with Redis

4  �“NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence”, Pramod J. Sadalage and Martin Fowler, United States: Addison-Wesley Educational 
Publishers, 2012.

http://www.roguewave.com/resources/white-papers/using-mongodb-with-sourcepro-db
http://www.roguewave.com/resources/white-papers/using-cassandra-with-sourcepro-db
http://www.roguewave.com/resources/white-papers/using-redis-with-sourcepro-db


Rogue Wave provides software development tools for mission-critical applications. Our trusted solutions address the growing complexity of building 
great software and accelerates the value gained from code across the enterprise. The Rogue Wave portfolio of complementary, cross-platform tools 
helps developers quickly build applications for strategic software initiatives. With Rogue Wave, customers improve software quality and ensure code 
integrity, while shortening development cycle times.

© 2016 Rogue Wave Software, Inc. All rights reserved.


